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This walkthrough introduces data management in R using the tidyverse and dplyr packages. After reviewing
the foundational concepts covered in Module 1, we will guide you through key data management techniques,
focusing on applying functions, such as filtering, selecting, and summarizing data, and using piping (%>%),
which will be central to your future work in R.

Initial Setup
Let’s begin by setting up your workspace and loading the necessary packages to manage and analyze our
dataset. First, you’ll want to set up a header in your R script to include information such as the script’s
purpose, who wrote it, and the last update. Use # to add comments that won’t affect the code’s execution.
My header looks like this:
########################################################
# Data Management I Walkthrough Script
# Ben Graham
# Last updated: September 5, 2024
# Lot's of cool stuff in the dplyr() package.
# Creating variables, subsetting data, summarizing data
########################################################

Next, set your working directory to the folder where you’ll store the project files using the setwd() function.
As we discussed in the Organization for Collaboration Module, this step is essential for maintaining personal
organization and enhancing teamwork by ensuring that all collaborators can easily navigate the project’s file
structure. Replace "YourFolderPath" in the example below with the actual path to your data.
# Set working directory
#setwd("YourFolderPath")

Finally, we need to install and load the required libraries: dplyr, tidyverse, and hflights. You can use
the Tools dropdown menu and select Install Packages or run the install.packages() function to install
the libraries. You only need to install these packages once, and then use the library() command to load
the packages for use.

We’re going to use the hflights dataset, which is a pre-packaged dataset that contains information on flights
out of Houston. As a reminder, pre-packaged datasets come with R, so you don’t need to import them from
external files—they are available for immediate use.
# Load required libraries
library(dplyr)
library(tidyverse)
library(hflights)
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Review: Vectors, Objects, & Operators
Remember that R thinks in vectors, so let’s start by creating one. Using c() (concatenate), we’ll make a
vector named world.pop that contains population data for different years (sound familiar?).
# Create 'world.pop' vector
world.pop <- c(2525, 3026, 3691, 4449, 5321, 6128, 6916)

Sequences
Next, we’ll use the seq() function to generate a sequence of numbers, which will be useful for organizing
data. Its syntax, seq(a, b, c), requires three parameters: a is the starting point, b is the end point, and c
is the increment by which to count. For example, create a vector called newvector that includes numbers
from 1 to 10, incrementing by 1.
# Create vector `newvector` with numbers from 1 to 10, incrementing by 1
newvector <- seq(1, 10, 1)

Also, let’s create a year vector containing decades from 1950 to 2010 and assign these years as names for the
world.pop vector.
# Create vector `year` with numbers from 1950 to 2010, counting by decades
year <- seq(1950, 2010, 10)

# Assign the 'year' vector as names to the 'world.pop' vector
names(world.pop) <- year

# Display 'world.pop' vector
world.pop

## 1950 1960 1970 1980 1990 2000 2010
## 2525 3026 3691 4449 5321 6128 6916

Subsetting Vectors
Let’s begin by familiarizing ourselves with the subset() function for manipulating vectors. The subset()
function is used as follows: subset(a, b), where a is the vector or dataframe to operate on, and b is the
condition applied to extract specific parts of the vector or dataframe.

To practice, let’s exclude the year 2000 from the world.pop vector.

Helpful Hints: | is the symbol for “or”; == tests for equality (read as “is exactly equal to”); and != tests
for inequality (read as “is not equal to”).
# Subset world.pop to exclude the year 2000
smallworld <- subset(world.pop, year != 2000)

print(smallworld)

## 1950 1960 1970 1980 1990 2010
## 2525 3026 3691 4449 5321 6916

Also, you can directly manipulate vectors without using the subset() function. Here’s how you can remove
specific positions from the world.pop vector, such as the values in the 5th and 6th positions, which correspond
to the years close to 2000.
# Remove the 6th and 5th elements from the vector
world.pop
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## 1950 1960 1970 1980 1990 2000 2010
## 2525 3026 3691 4449 5321 6128 6916

print(world.pop[c(-6, -5)])

## 1950 1960 1970 1980 2010
## 2525 3026 3691 4449 6916

Data Management with dplyr

Now, let’s move into data management. We will use the tbl_df() command to load the hflights data as a
dataframe.
# Load 'hflights' data
hflights <-tbl_df(hflights)

Let’s take a look at the structure of this dataframe!

Helpful Hint: To see the data you can click the hflights object in the Environment tab in R Studio to
see it in table view. Or type View(hflights) into your R script.
# Inspect structure of the data
str(hflights)

## tibble [227,496 x 21] (S3: tbl_df/tbl/data.frame)
## $ Year : int [1:227496] 2011 2011 2011 2011 2011 2011 2011 2011 2011 2011 ...
## $ Month : int [1:227496] 1 1 1 1 1 1 1 1 1 1 ...
## $ DayofMonth : int [1:227496] 1 2 3 4 5 6 7 8 9 10 ...
## $ DayOfWeek : int [1:227496] 6 7 1 2 3 4 5 6 7 1 ...
## $ DepTime : int [1:227496] 1400 1401 1352 1403 1405 1359 1359 1355 1443 1443 ...
## $ ArrTime : int [1:227496] 1500 1501 1502 1513 1507 1503 1509 1454 1554 1553 ...
## $ UniqueCarrier : chr [1:227496] "AA" "AA" "AA" "AA" ...
## $ FlightNum : int [1:227496] 428 428 428 428 428 428 428 428 428 428 ...
## $ TailNum : chr [1:227496] "N576AA" "N557AA" "N541AA" "N403AA" ...
## $ ActualElapsedTime: int [1:227496] 60 60 70 70 62 64 70 59 71 70 ...
## $ AirTime : int [1:227496] 40 45 48 39 44 45 43 40 41 45 ...
## $ ArrDelay : int [1:227496] -10 -9 -8 3 -3 -7 -1 -16 44 43 ...
## $ DepDelay : int [1:227496] 0 1 -8 3 5 -1 -1 -5 43 43 ...
## $ Origin : chr [1:227496] "IAH" "IAH" "IAH" "IAH" ...
## $ Dest : chr [1:227496] "DFW" "DFW" "DFW" "DFW" ...
## $ Distance : int [1:227496] 224 224 224 224 224 224 224 224 224 224 ...
## $ TaxiIn : int [1:227496] 7 6 5 9 9 6 12 7 8 6 ...
## $ TaxiOut : int [1:227496] 13 9 17 22 9 13 15 12 22 19 ...
## $ Cancelled : int [1:227496] 0 0 0 0 0 0 0 0 0 0 ...
## $ CancellationCode : chr [1:227496] "" "" "" "" ...
## $ Diverted : int [1:227496] 0 0 0 0 0 0 0 0 0 0 ...

Select Columns with select()

We often need to focus on specific variables within a dataframe. The select() function allows us to keep or
rename the columns we want to work with, reducing unnecessary clutter in our data.

This will reduce the number of columns (i.e., variables) in our dataframe while leaving the number of rows
(i.e., observations) the same.
# Select and rename specific variables
data <- hflights %>%
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select(Month,
DayOfWeek,
Airline = UniqueCarrier,
## Rename 'UniqueCarrier' variable to 'Airline' and keep it
Time = ActualElapsedTime,
## Rename 'ActualElapsedTime' to 'Time'
Origin:Cancelled)
## Keep all the variables from "Origin" through "Cancelled"

We can use select() to identify the variables we don’t want, using a - sign to denote the variables we want
to drop.
# Select all variables except for 'Cancelled'
data <- data %>%

select(-Cancelled)

# Inspect structure of the data
str(data)

## tibble [227,496 x 9] (S3: tbl_df/tbl/data.frame)
## $ Month : int [1:227496] 1 1 1 1 1 1 1 1 1 1 ...
## $ DayOfWeek: int [1:227496] 6 7 1 2 3 4 5 6 7 1 ...
## $ Airline : chr [1:227496] "AA" "AA" "AA" "AA" ...
## $ Time : int [1:227496] 60 60 70 70 62 64 70 59 71 70 ...
## $ Origin : chr [1:227496] "IAH" "IAH" "IAH" "IAH" ...
## $ Dest : chr [1:227496] "DFW" "DFW" "DFW" "DFW" ...
## $ Distance : int [1:227496] 224 224 224 224 224 224 224 224 224 224 ...
## $ TaxiIn : int [1:227496] 7 6 5 9 9 6 12 7 8 6 ...
## $ TaxiOut : int [1:227496] 13 9 17 22 9 13 15 12 22 19 ...

We can also create a dataframe with all variables that contain the word Time.

Helpful Hint: head() command which gives you a preview (usually the first six elements), we can use
View() to see all our data.
# Select all variables that contain the word 'Time'
testframe <- hflights %>%

select(contains("Time"))

head(testframe)

## # A tibble: 6 x 4
## DepTime ArrTime ActualElapsedTime AirTime
## <int> <int> <int> <int>
## 1 1400 1500 60 40
## 2 1401 1501 60 45
## 3 1352 1502 70 48
## 4 1403 1513 70 39
## 5 1405 1507 62 44
## 6 1359 1503 64 45

Filter Rows with filter()

Now, let’s explore how to filter rows based on specific conditions using the filter() function. This will allow
us to narrow down our data to only include the rows that meet certain criteria.

Let’s filter the dataset to create a new, smaller dataframe that contains only flights with LA-area destinations.
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# Create a vector that lists all LA-area airports
la_airports <- c("LAX", "ONT", "SNA", "BUR", "LGB")

# Filter flights to LA-area airports
la_flights <- data %>%

filter(Dest %in% la_airports)

# Display results
head(la_flights)

## # A tibble: 6 x 9
## Month DayOfWeek Airline Time Origin Dest Distance TaxiIn TaxiOut
## <int> <int> <chr> <int> <chr> <chr> <int> <int> <int>
## 1 1 1 CO 227 IAH LAX 1379 8 20
## 2 1 1 CO 229 IAH LAX 1379 11 17
## 3 1 1 CO 236 IAH LAX 1379 10 27
## 4 1 1 CO 211 IAH ONT 1334 5 17
## 5 1 1 CO 243 IAH SNA 1347 6 35
## 6 1 1 CO 226 IAH LAX 1379 13 15

Creating and Transforming Variables with mutate()

Now that we have filtered our dataset to focus on LA-area flights, let’s enhance our analysis by creating new
variables. The mutate() function lets us create new variables or transform existing ones. For example, we
can create a TaxiTotal variable representing total taxi time for each flight by combining taxi-in and taxi-out
times.
# Create 'TaxiTotal' variable
la_flights <- la_flights %>%

mutate(TaxiTotal = TaxiIn + TaxiOut,
TaxiProp = TaxiTotal/Time)

We can also create a variable, TaxiProp, that captures time spent taxing as a share of total flight time.
# Create 'TaxiTotal' variable
la_flights <- la_flights %>%

mutate(TaxiProp = TaxiTotal/Time)

Using ifelse() to add conditions to mutate()

Building on our previous use of mutate() to create and transform variables, we can further enhance our data
by using the ifelse() function to add a conditional logic. The structure of ifelse() in R is:

ifelse(condition, value_if_TRUE, value_if_FALSE)

Here, we use ifelse() with mutate() to create a Weekend variable indicating if a flight occurred on a
weekend, followed by the filter() function to keep only the weekend flights.
# Create 'Weekend' variable
la_flights <- la_flights %>%

mutate(Weekend = ifelse(DayOfWeek %in% c(1, 7), 1, 0)) %>%
## Create a Weekend variable: assign 1 if DayOfWeek is 1 or 7 (Sunday or
## Saturday), else assign 0
filter(Weekend == 1)
## Filter for all the Weekend = 1 rows (those flights will be on a weekend)
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Grouping and Summarizing Data
We are going to take a step further and learn how to summarize our data using the group_by() and
summarise() functions. We will cover the combination of group_by() and summarise() more in Data
Management 3 because they can take a bit of time to wrap your head around, but for now it’s important to
know that the combination of group_by() and summarise() helps us aggregate data by specific variables.

For instance, let’s say we want to know which days of the week have the shortest taxi times. We can
use group_by() to specify DayOfWeek as the grouping variable and summarise() to create a new variable
AverageTime that contains the average taxi time for each day of the week.

Note: summarise() radically changes the structure of our dataframe. Instead of one observation per flight,
we will now have one observation per day of the week, containing summary statistics about the average and
maximum taxi times.
# Create 'AverageTime' variable
weekday_time <- la_flights %>%

group_by(DayOfWeek) %>%
summarise(AverageTime = mean(Time, na.rm = T),

MaxTaxiTotal = max(TaxiTotal, na.rm = T))
## na.rm tells R to ignore missing values

For better readability, let’s reorder the output in ascending order using arrange(), with MaxTaxiTotal as a
tie breaker.
# Arrange variables
weekday_time <- la_flights %>%

group_by(DayOfWeek) %>%
summarise(AverageTime = mean(Time, na.rm = T),

MaxTaxiTotal = max(TaxiTotal, na.rm = T)) %>%
arrange(AverageTime, MaxTaxiTotal)
## The default is ascending order, but you can specify descending order using
## the desc() operator

Using n() to count observations
We can also pair group_by() with n() to count the number of flights each airline has in our dataframe.
# Create 'NoFlights' variable
carriers <- la_flights %>%

group_by(Airline) %>%
summarise(NoFlights = n()) %>%
## n() tells dplyr to count all observations by groups specified in group_by()
arrange(desc(NoFlights)) # desc() for descending order.

head(carriers)

## # A tibble: 3 x 2
## Airline NoFlights
## <chr> <int>
## 1 CO 1943
## 2 WN 393
## 3 MQ 228

These steps illustrate how to efficiently manage and analyze data using various functions in the dplyr package,
providing a solid foundation for more advanced data manipulation techniques.
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Putting it all together with piping %>%
Let’s consolidate everything we’ve learned into a single, clean line of code using the piping operator %>%. This
allows us to perform multiple operations in a streamlined manner. Let’s give it a go!
# Put all thr steps together with %>%
carriers_new <- hflights %>%

select(Month,
DayOfWeek,
Airline = UniqueCarrier,
Time = ActualElapsedTime,
Origin:TaxiOut) %>%

filter(Dest %in% c("LAX", "ONT", "SNA", "BUR", "LGB")) %>%
mutate(TaxiTotal = TaxiIn + TaxiOut,

TaxiProp = TaxiTotal/Time,
Weekend = ifelse(DayOfWeek %in% c(1,7), 1, 0)) %>%

filter(Weekend == 1) %>%
group_by(Airline) %>%
summarise(NoFlights = n()) %>%
arrange(desc(NoFlights))

Breaking it Down
To understand each step, let’s break down the code with detailed comments:
# Put all thr steps together with %>%
carriers_new <- hflights %>%

# Select the variables you want to work with
select(Month,

DayOfWeek,
Airline = UniqueCarrier,
Time = ActualElapsedTime,
Origin:TaxiOut) %>%

# Filter by the desired destinations (keeps only specified rows)
filter(Dest %in% c("LAX", "ONT", "SNA", "BUR", "LGB")) %>%

# Add variables whose values are the result of operations between other variables
mutate(TaxiTotal = TaxiIn + TaxiOut,

TaxiProp = TaxiTotal/Time,
Weekend = ifelse(DayOfWeek %in% c(1,7), 1, 0)) %>%

# Get only the rows where the Weekend variable has a value of 1
filter(Weekend == 1) %>%

# Group by Airline
group_by(Airline) %>%

# Summarise to add a variable called NoFlights that counts the number of
# flights per airline
summarise(NoFlights = n()) %>%

# Arrange in descending order
arrange(desc(NoFlights))
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Save Your Work
The default is for R to save any output to your working directory. If you want to save this R script in a
different location, you will want to specify the full filepath you want to save the file to. Because this object is
a single dataframe, we will save it in the .rds format. If you want to save multiple dataframes to a single
data file you can use .RData.

In my case, I will use:
# Save the new dataset
saveRDS(carriers_new, file = "/Volumes/GoogleDrive/My Drive/SPEC Summer/

REU 2022/training output/carriers_new_BEN.rds")

## Error in gzfile(file, mode): cannot open the connection

And we’re off!
This walkthrough has introduced key data management techniques in R using dplyr. By mastering these
functions and the piping operator, you’ll be well-prepared to handle more complex data tasks in future
modules. Don’t forget to save and annotate your R script for future reference—you’ll thank yourself later!
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